
Vienna 2025
Peter Hofer

PostgreSQL as
Open Source

Freedom has many difficulties
& democracy is not perfect,

but we have never had to put
a wall up to keep our people in

John F. Kennedy, 1963

“

“

Freedom has many difficulties
& democracy is not perfect,

but we have never had to put
a wall up to keep our people in

John F. Kennedy, 1963

“

“
matches
well to

software

WICHTIG

Closed Source
What does that really mean?

Bugs and errors
numerous and

disruptive

Knowledge Base
What can one

actually know?

The love of detail
Purpose vs. paycheck

Bugs and errors

And how to deal with it

1.DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
2. audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
3. last_archive_time => TO_TIMESTAMP(:ts, 'YYYY-MM-DD HH24:MI:SS.FF')
4.);

5.DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
6. audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
7. use_last_arch_timestamp => true
8.);

● So far, 4 different error messages...

● Identical systems with identical loads

● Occasionally, ancient data remains

An example

Knowledge Base

What can one actually know?

PostgreSQL World
● “I'll take a quick look”

● “That makes...”

● “Ah, I know that, wait a moment...”

● … I probably shouldn't have asked …

“Let's ask the guru”

Commercial world
● “I don't know.”

● “I guess that …”

● “... never seen this before…”

Problem

The realization

How was the colleague supposed to

know that, anyway?

“

“

● “Not knowing” = Research

● “Not knowing” = Delay

● “Not knowing” = Risk

● “Not knowing” = Potentially wrong

● “Not knowing” = Frustration

● “Not knowing” = Loss of trust

What does that mean in
real life?

It can be done better

What does open source really mean?

1.test=# SHOW
effective_cache_size;

2. effective_cache_size
3.----------------------
4. 4GB
5.(1 row)

1.test=# SHOW
effective_cache_size;

2. effective_cache_size
3.----------------------
4. 4GB
5.(1 row)

What does
this?

Let's take a closer look...
1.hs@system:~/src/postgresql-17.3/src/backend$ grep -r -n -I -l effective_cache_size

*

2.access/gist/gistbuild.c

3.optimizer/path/costsize.c

4.utils/misc/postgresql.conf.sample

5.utils/misc/guc_tables.c

GIST? What's happening there?
731 | /* subtree must fit in cache (with safety factor of 4) */

732 | if (subtreesize > effective_cache_size / 4)

733 | break;

Optimizer? Sounds interesting...
1.* costsize.c
2. * Routines to compute (and set) relation sizes and path costs
3.…
4. * seq_page_cost Cost of a sequential page fetch
5. * random_page_cost Cost of a non-sequential page fetch
6. * cpu_tuple_cost Cost of typical CPU time to process a tuple
7. * cpu_index_tuple_cost Cost of typical CPU time to process an index tuple
8. * cpu_operator_cost Cost of CPU time to execute an operator or function
9. * parallel_tuple_cost Cost of CPU time to pass a tuple from worker to leader backend
10. * parallel_setup_cost Cost of setting up shared memory for parallelism
11.…
12. * We also use a rough estimate "effective_cache_size" of the number of
13. * disk pages in Postgres + OS-level disk cache. (We can't simply use
14. * NBuffers for this purpose because that would ignore the effects of
15. * the kernel's disk cache.)
16. *
17. * Obviously, taking constants for these values is an oversimplification,
18. * but it's tough enough to get any useful estimates even at this level of
19. * detail. Note that all of these parameters are user-settable, in case
20. * the default values are drastically off for a particular platform.

1. * index_pages_fetched
2. * Estimate the number of pages actually fetched after accounting for
3. * cache effects.
4. *
5. * We use an approximation proposed by Mackert and Lohman, "Index Scans
6. * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
7. * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
8. * The Mackert and Lohman approximation is that the number of pages fetched is
9. * PF =
10. * min(2TNs/(2T+Ns), T) when T <= b
11. * 2TNs/(2T+Ns) when T > b and Ns <= 2Tb/(2T-
b)

12. * b + (Ns - 2Tb/(2T-b))*(T-b)/T when T > b and Ns > 2Tb/(2T-b)
13. * where
14. * T = # pages in table, N = # tuples in table
15. * s = selectivity = fraction of table to be scanned, b = # buffer pages available
16. *
17. * We assume that effective_cache_size is the total number of buffer pages
18. * available for the whole query, and pro-rate that space across all the
19. * tables in the query and the index currently under consideration. (This
20. * ignores space needed for other indexes used by the query, but since we
21. * don't know which indexes will get used, we can't estimate that very well;
22. * and in any case counting all the tables may well be an overestimate, since
23. * depending on the join plan not all the tables may be scanned concurrently.)

Optimizer? Sounds interesting...

1. /*----------
2. * Estimate number of main-table pages fetched, and compute I/O cost.
3. *
4. * When the index ordering is uncorrelated with the table ordering,
5. * we use an approximation proposed by Mackert and Lohman (see
6. * index_pages_fetched() for details) to compute the number of pages
7. * fetched, and then charge spc_random_page_cost per page fetched.
8. *
9. * When the index ordering is exactly correlated with the table ordering
10. * (just after a CLUSTER, for example), the number of pages fetched should
11. * be exactly selectivity * table_size.

● Yes, the example is simple

● Yes, you still need to know something about the
topic

● But: Users and support have a chance!

Optimizer? Sounds interesting...

Love for details

To improve life for everyone

PostgreSQL
● early adopter,

● JSON in 2012

● JSONB in 2014.

Example: JSON support

Oracle
● JSON in 2014,

● native binary JSON in 2021

Oracle entered the JSON world in 2014, but its native binary JSON type
only arrived in 2021 – seven years after PostgreSQL’s JSONB

Recently: more than 1000 words
1.test=# SELECT 'CREATE TABLE tab' || x || ' (id int) '
2. FROM generate_series(1, 3) AS x;
3. ?column?
4.-----------------------------
5. CREATE TABLE tab1 (id int)
6. CREATE TABLE tab2 (id int)
7. CREATE TABLE tab3 (id int)
8.(3 rows)

9.test=# \gexec
10.CREATE TABLE
11.CREATE TABLE
12.CREATE TABLE

Note: nobody
does such a

thing

In a nutshell

a few thoughts

Any questions?
Ask anything

Our Partners at PGDay Austria

