
Postgres withmany Data
To MAXINT and beyond

Patrick Lauer <patrick.lauer@credativ.de>

04.09.2025

Patrick Lauer

• <patrick.lauer@credativ.de>

• ca.2 years at credativ

• Professional Services Consultant

• Mostly Databases, especially

PostgreSQL

• Originally Sysadmin/Devops/Platform

Engineer

• Gentoo Linux Developer

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 1

mailto:patrick.lauer@credativ.de

credativ GmbH

• Founded 1999 in Mönchengladbach

• Close ties to Open-Source Community

• 40 Open-Source experts

• Consulting, development, training, support (3rd-level / 24x7)

• Open-Source infrastructure with Debian, Kubernetes and Proxmox

• Open-Source databases with PostgreSQL

• DevOps with Ansible, Puppet, Terraform and others

• Since 2025 independent owner-managed company again

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 2

Overview

• (my) History

• The root of most problems

• PostgreSQL limits

• Hardware-Limits

• PostgreSQL with many data

• Scaling issues

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 3

(my) History

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 4

How I ended up here

• ca. 2015: New Job as Sysadmin, using lots of PostgreSQL

• Chris Travers: Postgres at 10TB and beyond

• ... we hired Chris

• a few weeks later: Chris Travers: Postgres at 20TB and beyond

• Elasticsearch doesn’t scale, we replace it with PostgreSQL:

• pgconf.ru: Wiktor Kerr does a talk on Bagger

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 5

Fun with PostgreSQL

• Bagger: Petabyte-sized Logging with PostgreSQL

• internal project: 400TB+ statistics/rollups, distributed over 32+ Servers

• internal project: 20TB+ in 400k+ tables, one table per event-type

• internal project: 200TB+ in a single DB, specific data extracted for pattern

analysis (fraud etc.)

• PostgreSQL was always our default

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 6

We are not alone

• Operational hazards of managing PostgreSQL DBs over 100TB (adyen) (earlier

today!)

• pgconf.de .eu: Gitlab

• Chris Travers / One More Data

• and many many more

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 7

Lesson 0

• Best to not have many data

• Many data = many problem

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 8

Normalization of Deviance

• Always close to the limits

• Risk perception slowly shifts

• ”Best practise” doesn’t apply

• ”and then we disabled fsync to make it run faster”

• ”it’s an append-only workload, let’s disable autovacuum”

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 9

The root of most problems

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 10

MVCC

• Multi-Version Concurreny Control

• Needed to have stable (repeatable) results with concurrent queries

• PostgreSQL: every row (tuple) has lifetime / visibility

• Consequence: No in-place updates!

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 11

ARIES

• Algorithms for Recovery and Isolation Exploiting Semantics

• Crash safety is handled by serializing all changes into a log that can be replayed

• Checkpoint allows truncating log as data before checkpoint is guaranteed to be

persisted

• In PostgreSQL this is implemented as WAL

• LSN (Log Sequence Number) orders each distinct unit of change

• Enables crash recovery and point-in-time recovery

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 12

Why this is challenging

• WAL: Single mutex for all database changes!

• WAL limits theoretical scalability

• MVCC needs cleanup: Vacuum

• (Auto)Vacuum creates write amplification

• failing to run Vacuum creates performance issues

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 13

The NoSQL option

• If we don’t care about persistence we can go faster

• If we don’t care about correctness we can go faster

• Does this satisfy your requirements?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 14

PostgreSQL limits

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 15

Limits

• Documentation says:

• number of databases: 4,294,950,911

• relations* per database: 1,431,650,303

• rows per table: limited by the number of tuples that can fit onto 4,294,967,295

pages (ca. 32TB**)

• these limits are unlikely to be reached

• *Relation is anything that is stored in the catalog table pg_class: tables, views,

sequences, indexes, materialized views, partitioned tables and partitioned

indexes.

• ** with 8KB Blocksize

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 16

Limits

• Documentation says:

• columns per table: 1,600**

• field size: 1 GB (TOAST size limit)

• field size (jsonb): 256MB

• large objects: oh dear - please avoid this

• shared buffers is limited to 256GB **

• ** with 8kB blocksize

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 17

Limits

• There are relatively strict limits on the size and shape of objects we can persist

• There are fewer limits on the numbers of such objects

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 18

Hardware-Limits

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 19

Hardware

• Servers can get very big

• 256+ CPU-Cores, 4TB+ RAM is easy (but not cheap)

• large systems often show interesting issues with NUMA (pgconf.eu talk by

Andres Freund)

• storage can get very very large - >1PB in 1U is easy

• SAN/NAS mostly limited by wallet size

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 20

Hardware

• Largest single system I’m aware of:

• IBM z17

• up to 208x 8-core CPUs @ 5.5Ghz

• up to 64TB RAM

• nice hardware, but is it an effective solution to our problems?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 21

Clustering

• Data is maybe too big for a single server -

• ”Somehow” distribute PostgreSQL over multiple servers

• Application sharding?

• or maybe citus, pgdog, Greenplum/CloudberryDB, PostgresXL/XC

• Distributed systems are either ”slow” or lose ACID features

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 22

Sharding

• Citus: No global transaction synchronization

• Partial visibility of transactions possible, ”eventually consistent”

• Application sharding: emulate transactions outside the DB?

• 2-Phase-Commits are slow and complex

• Performance: every query has some network latency added, overload of single

components possible

• Relational database without ACID? Why not NoSQL or some other modern

solution?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 23

Chris’ rule of thumb

• Chris Travers: ”Every time you grow a system by one order of magnitude some

components will become a bottleneck”

• ... but we don’t know which component

• Constantly observe, adapt, adjust

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 24

Lesson 1

• A lot of problems are mostly financial

• Big Data, Big Budget

• Some problems remain that can’t be squashed with money directly

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 25

PostgreSQL withmany data

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 26

practical limits

• ”Billion Tables” talk (PGCon 2013): filesystem can become a bottleneck

• ”Velocity”: WAL is limited to 1-2GB/s*, this is a global throughput limit

• even small databases can be difficult (high rate of change, long-running

transactions)

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 27

Data at rest

• Data that is not queried has very little cost

• Once VACUUM FREEZE is done there is no further maintenance

• Only mutation (changing data) has maintenance cost

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 28

Small databases

• 1GB: ”fits in CPU-cache”, everything is reasonably fast

• backup/restore in an instant

• ALTER TABLE needs a second or three

• Tables and indexes are few enough to be manually managed

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 29

1TB

• Data (usually) doesn’t fit into RAM

• Tablescans are generally slow, indexes needed

• Too many indexes cause problems too!

• Autovacuum is often difficult to handle and needs careful adjustment

• Autovacuum: Defaults are very conservative

• Performance tuning: fill factor, tuple_cost, checkpoints

• Query tuning:

• Slow query log, EXPLAIN (ANALYZE, BUFFERS [,...])

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 30

10TB

• Backup and Restore times can exceed SLA / RTO

• Replication can be challenging: How long does it take to clone a new replica?

• Large tables may benefit from partitioning (helps autovacuum and can speed up

queries)

• Sequences - int vs. bigint: easy to overflow int, best to use bigint all the time

• Wraparound vacuums - when autovacuum can’t keep up properly

• Number of tables might require automation

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 31

100TB

• ”Velocity” (rate of change) limited by total throughput of WAL writer

• Autovacuum can write changes to WAL faster than replicas can apply the

changes

• Self-DoS: Query results can become huge

• Many tables vs. large tables: different pain points

• Partitioning can make query plans huge, and can make query planning take a

very long time

• Schema changes can take a long time, and lock out other queries

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 32

1PB

• Expensive to have this much hardware attached to one server

• RAM-Bandwidth as bottleneck?

• ”blast radius”: What happens if this server is unavailable?

• Can a single server manage the required amount of connections?

• HA / DR is needlessly exciting

• I am not aware of any single PostgreSQL install this large (yet)

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 33

Lesson 2

• Operational problems scale with data size

• Requires having enough skilled employees (or good partners)

• Near the limit you’ll find issues that are not well documented

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 34

Scaling issues

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 35

Table size

• MVCC: Data doesn’t get deleted immediately as older transactions may still see it

• (Auto)Vacuum: asynchronous cleanup of old data

• (Auto)Vacuum runs a very long time on large tables

• Wraparound-vacuum: transaction-ID is 32bit

• Indexes too large, too bloated, index access is too expensive (B-trees!)

• effective limit of a few TB for a single table

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 36

PostgreSQL

• Write Ahead Log: Write summarized changes into a sequential log, ensures

durability, enables crash recovery

• WAL is global bottleneck

• Replication limits rate of change: Replicas usually can’t sustain same write

volume as Primary

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 37

Backup

• Backup is at least basebackup plus WAL

• Save WAL for weeks/months? That’s huge.

• Backup: basebackup can block WAL-cleanup, can accidentally fill storage

• Backup may acquire locks that prevent DDL, even on replicas

• Restore: How long does it take to restore from backup?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 38

Clients

• Many connections: just increase max_connections?

• max_connections affects internal datastructures, can cause performance issues

• Many parallel connections can slow down transaction handling

• Every connection is its own process - how does the OS handle thousands of

processes?

• Connection Pooler?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 39

Queries

• Long-running queries can block Autovacuum

• this can cause Table Bloat

• or weird issues with row visibility, index bloat, ...

• If Autovacuum is stalled for a longer time it has more to do to catch up

• If it gets blocked too long: wraparound vacuum

• Long-running queries (can) block DDL - even on replicas!

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 40

Concurrency

• Concurrent queries can have locking issues (deadlock, lock waiting)

• Lock contention: queries might effectively be serialized

• Maximum number of global locks can get exhausted

• Shared_buffers has maximum size, and bigger isn’t always faster

• Query diversity can lead to eviction of pages from shared_buffers

• Indexes of large tables might not fit into shared_buffers, index access ”slow”

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 41

Blast Radius

• Does failover to a replica work as intended? (e.g. WAL replay can take a long

time)

• How long to restore redundancy after a failure?

• How long to restore data (e.g. accidental DROP TABLE)

• Will the projected growth fit into available hardware?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 42

Specialisation

• If requirements allow for it -

• Disable fsync, use unlogged tables

• Disable Autovacuum (per tablespace?)

• Batch insert + vacuum, less work for autovacuum

• Partitioning, drop partition instead of large deletes

• Replicate data from the application instead of replicating in PostgreSQL

• Tradeoff: convenient vs. fast, cost vs. complexity

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 43

The future?

• Different storage-engines? Columnar Storage, OrioleDB etc.

• Improvements with (auto)Sharding and QueryPlanner - Timescale etc.

• 64bit TransactionIDs ?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 44

The Future?

• Distributed PostgreSQL - Greenplum, Citus, PostgresXC/XL

• PG-compatible frontend, but new backend - CockroachDB, YugabyteDB, ...

• Autoscaling / Cloud Native? NeonDB

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 45

Inspiration

• Foreign Data Wrappers - just connect to other DBs

• Extensions - add missing functionality

• Just put another DB inside PostgreSQL - pg_duckdb

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 46

A different future

• Maybe we don’t need to save all data

• Maybe we don’t need to keep all data forever

• Maybe we can avoid most of the problems by not having so many data

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 47

To think about

• Datensparsamkeit: best to not have the data

• Budget: Data has cost

• Compliance: Data has (legal) risks

• Staffing: To solve complex issues you need good motivated people

• And sometimes you will need to build something yourself

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 48

Takeaway

• More data, more problems

• Big data, big budget

• Architectural problems vs. operational problems

• (non-financial) cost of data: Compliance etc.

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 49

Questions?

Patrick Lauer <patrick.lauer@credativ.de> credativ GmbH 50

	(my) History
	The root of most problems
	PostgreSQL limits
	Hardware-Limits
	PostgreSQL with many data
	Scaling issues
	-4.75ex Questions? to[width=5em]/usr/share/latex-beamer-theme-credativ/credativ-q-a.png

